Ertser Commit der test-Version

This commit is contained in:
2025-10-10 16:27:06 +00:00
commit 2308aa56a3
37 changed files with 10988 additions and 0 deletions

166
databases/influx_flux.js Normal file
View File

@@ -0,0 +1,166 @@
// Access to influxDB vie HTTP
import axios from 'axios'
import { DateTime } from 'luxon'
// import csvParse from 'csv-parser'
import { logit, logerror } from '../utilities/logit.js'
import {returnOnError} from "../utilities/reporterror.js";
import {csv2Json} from "../utilities/csv2json.js";
let INFLUXHOST = process.env.INFLUXHOST || "localhost"
let INFLUXPORT = process.env.INFLUXPORT || 8086
let INFLUXTOKEN = process.env.INFLUXTOKEN || ""
//"rklEClT22KfdXZhA47eyJhbqcvekb8bcKCqlUG7n72uDSmR2xGvif0CmGJe0WQtXB96y29mmt-9BdsgWA5npfg=="
//"BNR6cGdb006O1T6hQkGcfB8tgH-UPO6QkOPToeAvrP7LATJbCuWi1wYf3HBpVdZQEBxHxNSrNenZsOSMogX-lg=="
let INFLUXDATABUCKET = process.env.INFLUXDATABUCKET || "sensor_data"
let INFLUXORG = process.env.INFLUXORG || "citysensor"
const INFLUXURL_READ = `http://${INFLUXHOST}:${INFLUXPORT}/api/v2/query?org=${INFLUXORG}`
const INFLUXURL_WRITE = `http://${INFLUXHOST}:${INFLUXPORT}/api/v2/write?org=${INFLUXORG}&bucket=${INFLUXDATABUCKET}`
const influxRead = async (query) => {
let start = DateTime.now()
logit(`ReadInflux from ${INFLUXURL_READ}`)
let erg = { values: [], err: null}
try {
let ret = await axios({
method: 'post',
url: INFLUXURL_READ,
data: query,
headers: {
Authorization: `Token ${INFLUXTOKEN}`,
Accept: 'application/csv',
'Content-type': 'application/vnd.flux'
},
timeout: 10000,
})
if (ret.status !== 200) {
return returnOnError(erg, RESPSTATUS, influxRead.name, ret.status)
}
erg.values = ret.data
} catch (e) {
return returnOnError(erg, e, influxRead.name)
}
// logit(`Influx read time: ${start.diffNow('seconds').toObject().seconds * -1} sec`)
return erg
}
const influxWrite = async (data) => {
let start = DateTime.now()
let ret
try {
ret = await axios({
method: 'post',
url: INFLUXURL_WRITE,
data: data,
headers: {
Authorization: `Token ${INFLUXTOKEN}`,
Accept: 'application/json',
'Content-Type': 'text/plain; charset=utf-8'
},
timeout: 10000,
})
if (ret.status !== 204) {
logerror(`doWrite2API Status: ${ret.status}`)
}
} catch (e) {
logerror(`doWrite2API ${e}`)
}
logit(`Influx-Write-Time: ${start.diffNow('seconds').toObject().seconds * -1} sec`)
return ret
}
const fetchFromInflux = async (ret, query) => {
let { values, err} = await influxRead(query)
if(err) {
if(err.toString().includes('400')) {
return returnOnError(ret, 'SYNTAXURL', fetchFromInflux.name)
} else {
return returnOnError(ret, err, fetchFromInflux.name)
}
}
if (values.length <= 2) {
return returnOnError(ret, 'NODATA', fetchFromInflux.name)
}
ret.values = csv2Json(values)
return ret
}
export const fetchActData = async (opts) => {
let ret = {err: null, values: []}
let sorting = ''
if(opts.sort) {
if (opts.sort === 1) {
sorting = '|> sort(columns: ["_time"], desc: false)'
} else if (opts.sort === -1) {
sorting = '|> sort(columns: ["_time"], desc: true)'
}
}
// build the flux query
let query = `
from(bucket: "sensor_data")
|> range(${opts.start}, ${opts.stop})
|> filter(fn: (r) => r.sid == "${opts.sensorid}")
${sorting}
|> keep(columns: ["_time","_field","_value"])
|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
`
return await fetchFromInflux(ret, query)
}
export const fetchNoiseAVGData = async (opts) => {
let ret = {err: null, values: []}
let small = '|> keep(columns: ["_time", "peakcount", "n_AVG"])'
if (opts.long) {
small = ''
}
let queryAVG = `
import "math"
threshold = ${opts.peak}
data = from(bucket: "sensor_data")
|> range(${opts.start}, ${opts.stop})
|> filter(fn: (r) => r["sid"] == "${opts.sensorid}")
e10 = data
|> filter(fn: (r) => r._field == "E10tel_eq")
|> aggregateWindow(every: 1h, fn: mean, createEmpty: false)
|> map(fn: (r) => ({r with _value: (10.0 * math.log10(x: r._value))}))
|> keep(columns: ["_time","_field","_value"])
|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
|> rename(columns: {"E10tel_eq" : "n_AVG"})
ecnt = data
|> filter(fn: (r) => r._field == "E10tel_eq")
|> aggregateWindow(every: 1h, fn: count, createEmpty: false)
|> keep(columns: ["_time","_field","_value"])
|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
|> rename(columns: {"E10tel_eq" : "count"})
esum = data
|> filter(fn: (r) => r._field == "E10tel_eq")
|> aggregateWindow(every: 1h, fn: sum, createEmpty: false)
|> keep(columns: ["_time","_field","_value"])
|> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value")
|> rename(columns: {"E10tel_eq" : "n_sum"})
peak = data
|> filter(fn: (r) => r._field == "LA_max")
|> aggregateWindow(
every: 1h,
fn: (column, tables=<-) => tables
|> reduce(
identity: {peakcount: 0.0},
fn: (r, accumulator) => ({
peakcount: if r._value >= threshold then
accumulator.peakcount + 1.0
else
accumulator.peakcount + 0.0,
}),
),
)
|> keep(columns: ["_time","peakcount"])
part1 = join( tables: {e10: e10, ecnt: ecnt}, on: ["_time"])
part2 = join( tables: {esum: esum, peak: peak}, on: ["_time"])
join( tables: {P1: part1, P2: part2}, on: ["_time"])
${small}
`
return await fetchFromInflux(ret, queryAVG)
}

395
databases/influx_sql.js Normal file
View File

@@ -0,0 +1,395 @@
// Access to InfluxDB 1.8 via HTTP using InfluxQL
//
// IMPORTANT: InfluxDB 1.8 vs 2.0 Data Schema Differences:
// - InfluxDB 1.8: Only stores LA_max, LA_min, LA_eq (all in dB)
// - InfluxDB 2.0: Additionally stores E10tel_eq as pre-calculated linear value (10^(LA_max/10))
//
// This implementation converts LA_max to E10tel_eq at runtime to maintain
// compatibility with the Flux version while ensuring correct logarithmic averaging.
import axios from 'axios'
import { DateTime } from 'luxon'
import { logit, logerror } from '../utilities/logit.js'
import { returnOnError } from "../utilities/reporterror.js"
// InfluxDB 1.8 Configuration
let INFLUXHOST = process.env.INFLUXHOST || "localhost"
let INFLUXPORT = process.env.INFLUXPORT || 8086
let INFLUXUSER = process.env.INFLUXUSER || ""
let INFLUXPASS = process.env.INFLUXPASS || ""
let INFLUXDB = process.env.INFLUXDB || "sensor_data"
// InfluxDB 1.8 URLs
const INFLUXURL_READ = `http://${INFLUXHOST}:${INFLUXPORT}/query`
const INFLUXURL_WRITE = `http://${INFLUXHOST}:${INFLUXPORT}/write`
/**
* Execute InfluxQL query against InfluxDB 1.8
* @param {string} query - InfluxQL query string
* @returns {Object} - {values: [], err: null}
*/
const influxRead = async (query) => {
let start = DateTime.now()
logit(`ReadInflux from ${INFLUXURL_READ}`)
let erg = { values: [], err: null}
try {
const params = {
db: INFLUXDB,
q: query,
epoch: 'ms' // Return timestamps in milliseconds
}
// Add authentication if provided
if (INFLUXUSER && INFLUXPASS) {
params.u = INFLUXUSER
params.p = INFLUXPASS
}
let ret = await axios({
method: 'get',
url: INFLUXURL_READ,
params: params,
timeout: 10000,
})
if (ret.status !== 200) {
return returnOnError(erg, 'RESPSTATUS', influxRead.name, ret.status)
}
// InfluxDB 1.8 returns JSON format
if (ret.data.error) {
return returnOnError(erg, ret.data.error, influxRead.name)
}
erg.values = ret.data.results
} catch (e) {
return returnOnError(erg, e, influxRead.name)
}
logit(`Influx read time: ${start.diffNow('seconds').toObject().seconds * -1} sec`)
return erg
}
/**
* Write data to InfluxDB 1.8
* @param {string} data - Line protocol data
* @returns {Object} - Response object
*/
const influxWrite = async (data) => {
let start = DateTime.now()
let ret
try {
const params = {
db: INFLUXDB,
precision: 'ms'
}
// Add authentication if provided
if (INFLUXUSER && INFLUXPASS) {
params.u = INFLUXUSER
params.p = INFLUXPASS
}
ret = await axios({
method: 'post',
url: INFLUXURL_WRITE,
params: params,
data: data,
headers: {
'Content-Type': 'text/plain; charset=utf-8'
},
timeout: 10000,
})
if (ret.status !== 204) {
logerror(`doWrite2API Status: ${ret.status}`)
}
} catch (e) {
logerror(`doWrite2API ${e}`)
}
logit(`Influx-Write-Time: ${start.diffNow('seconds').toObject().seconds * -1} sec`)
return ret
}
/**
* Helper function to transform InfluxDB 1.8 result to format compatible with Flux version
* @param {Array} series - InfluxDB series data
* @returns {Array} - Transformed data array
*/
const transformInfluxResult = (series) => {
if (!series || !series.length) return []
const result = []
series.forEach(serie => {
if (!serie.values) return
const columns = serie.columns
const timeIndex = columns.indexOf('time')
serie.values.forEach(row => {
const record = {}
columns.forEach((col, index) => {
if (col === 'time') {
// Convert timestamp to ISO string for compatibility
record._time = new Date(row[index]).toISOString()
} else {
record[col] = row[index]
}
})
result.push(record)
})
})
return result
}
/**
* Execute query and transform results
* @param {Object} ret - Return object
* @param {string} query - InfluxQL query
* @returns {Object} - Transformed result
*/
const fetchFromInflux = async (ret, query) => {
let { values, err } = await influxRead(query)
if (err) {
if (err.toString().includes('400')) {
return returnOnError(ret, 'SYNTAXURL', fetchFromInflux.name)
} else {
return returnOnError(ret, err, fetchFromInflux.name)
}
}
if (!values || !values.length || !values[0].series) {
return returnOnError(ret, 'NODATA', fetchFromInflux.name)
}
ret.values = transformInfluxResult(values[0].series)
return ret
}
/**
* Fetch current/historical sensor data from InfluxDB 1.8
* @param {Object} opts - Options object
* @param {string} opts.sensorid - Sensor ID
* @param {string} opts.start - Start time (e.g., "start: -1h")
* @param {string} opts.stop - Stop time (e.g., "stop: now()")
* @param {number} opts.sort - Sort order (1 for ascending, -1 for descending)
* @returns {Object} - {err: null, values: []}
*/
export const fetchActData = async (opts) => {
let ret = { err: null, values: [] }
// Convert Flux time format to InfluxQL format
let startTime = opts.start.replace('start: ', '').trim()
let stopTime = opts.stop.replace('stop: ', '').trim()
// Build sorting clause
let orderClause = ''
if (opts.sort) {
if (opts.sort === 1) {
orderClause = 'ORDER BY time ASC'
} else if (opts.sort === -1) {
orderClause = 'ORDER BY time DESC'
}
}
// InfluxQL query to get LA_max for a sensor within time range
// Note: In InfluxDB 1.8 we only have LA_max, not E10tel_eq like in 2.0
const query = `
SELECT "LA_max", "LA_min", "LA_eq"
FROM "measurements"
WHERE "sid" = '${opts.sensorid}'
AND time >= ${startTime}
AND time <= ${stopTime}
${orderClause}
`
// Get the data and transform it to include E10tel_eq equivalent
const result = await fetchFromInflux(ret, query)
if (result.err) {
return result
}
// Transform data to add E10tel_eq field for compatibility with Flux version
// E10tel_eq = 10^(LA_max/10)
result.values = result.values.map(record => ({
...record,
E10tel_eq: record.LA_max !== null && record.LA_max !== undefined
? Math.pow(10, record.LA_max / 10)
: null
}))
return result
}
/**
* Helper function to calculate logarithmic average for decibel values
* For decibel values, we need to:
* 1. Convert dB to linear scale (10^(dB/10))
* 2. Calculate arithmetic mean of linear values
* 3. Convert back to dB (10 * log10(mean))
* @param {Array} values - Array of decibel values
* @returns {number} - Logarithmic average in dB
*/
const calculateLogMean = (values) => {
if (!values || values.length === 0) return null
// Convert dB to linear scale, calculate mean, convert back to dB
const linearSum = values.reduce((sum, val) => {
if (val !== null && val !== undefined) {
return sum + Math.pow(10, val / 10)
}
return sum
}, 0)
const validCount = values.filter(val => val !== null && val !== undefined).length
if (validCount === 0) return null
const linearMean = linearSum / validCount
return 10 * Math.log10(linearMean)
}
/**
* Fetch noise averaging data from InfluxDB 1.8 with proper logarithmic averaging for LAmax
* @param {Object} opts - Options object
* @param {string} opts.sensorid - Sensor ID
* @param {string} opts.start - Start time
* @param {string} opts.stop - Stop time
* @param {number} opts.peak - Peak threshold for counting
* @param {boolean} opts.long - Return full data or just summarized
* @returns {Object} - {err: null, values: []}
*/
export const fetchNoiseAVGData = async (opts) => {
let ret = { err: null, values: [] }
// Convert Flux time format to InfluxQL format
let startTime = opts.start.replace('start: ', '').trim()
let stopTime = opts.stop.replace('stop: ', '').trim()
// Since InfluxQL doesn't support complex joins like Flux, we need to make multiple queries
// and combine the results in JavaScript
// Query 1: Get LA_max data aggregated by hour for E10tel calculation
// In InfluxDB 1.8, we only have LA_max (dB), need to convert to E10tel equivalent
const queryLAmaxForE10 = `
SELECT "LA_max", time
FROM "measurements"
WHERE "sid" = '${opts.sensorid}'
AND time >= ${startTime}
AND time <= ${stopTime}
AND "LA_max" IS NOT NULL
ORDER BY time ASC
`
// Query 2: Same query for peak counting (we'll process the same data)
const queryLAmaxForPeaks = queryLAmaxForE10
try {
// Execute LA_max query (we use the same data for both E10tel calculation and peak counting)
let { values: lamaxValues, err: lamaxErr } = await influxRead(queryLAmaxForE10)
if (lamaxErr) {
return returnOnError(ret, lamaxErr, fetchNoiseAVGData.name)
}
if (!lamaxValues || !lamaxValues.length || !lamaxValues[0].series) {
return returnOnError(ret, 'NODATA', fetchNoiseAVGData.name)
}
// Transform LA_max results
const lamaxData = transformInfluxResult(lamaxValues[0].series)
// Group LA_max data by hour and calculate:
// 1. E10tel equivalent values (10^(LA_max/10))
// 2. Peak counting
// 3. Statistics for n_AVG calculation
const hourlyData = {}
lamaxData.forEach(record => {
const timestamp = new Date(record._time)
const hourKey = new Date(timestamp.getFullYear(), timestamp.getMonth(),
timestamp.getDate(), timestamp.getHours()).toISOString()
if (!hourlyData[hourKey]) {
hourlyData[hourKey] = {
time: hourKey,
lamaxValues: [],
e10telValues: [], // Converted LA_max to E10tel equivalent
peakCount: 0
}
}
const lamax = record.LA_max
if (lamax !== null && lamax !== undefined) {
// Store original LA_max value
hourlyData[hourKey].lamaxValues.push(lamax)
// Convert LA_max (dB) to E10tel equivalent: 10^(LA_max/10)
const e10tel = Math.pow(10, lamax / 10)
hourlyData[hourKey].e10telValues.push(e10tel)
// Count peaks
if (lamax >= opts.peak) {
hourlyData[hourKey].peakCount++
}
}
})
// Calculate final results for each hour
const combinedResults = []
Object.values(hourlyData).forEach(hourData => {
const result = {
_time: hourData.time,
count: hourData.e10telValues.length,
peakcount: hourData.peakCount
}
// Calculate E10tel statistics
if (hourData.e10telValues.length > 0) {
// Sum of E10tel values
result.n_sum = hourData.e10telValues.reduce((sum, val) => sum + val, 0)
// Mean of E10tel values, then convert back to dB for n_AVG
// This matches the Flux version: mean(E10tel_eq) then 10*log10(mean)
const e10telMean = result.n_sum / hourData.e10telValues.length
result.n_AVG = 10.0 * Math.log10(e10telMean)
}
// Add additional fields if opts.long is true
if (opts.long) {
result.LA_max_values = hourData.lamaxValues
result.LA_max_log_avg = calculateLogMean(hourData.lamaxValues)
result.E10tel_values = hourData.e10telValues
}
combinedResults.push(result)
})
// Sort by time
combinedResults.sort((a, b) => new Date(a._time) - new Date(b._time))
// Filter results based on opts.long
if (!opts.long) {
ret.values = combinedResults.map(record => ({
_time: record._time,
peakcount: record.peakcount,
n_AVG: record.n_AVG
}))
} else {
ret.values = combinedResults
}
} catch (e) {
return returnOnError(ret, e, fetchNoiseAVGData.name)
}
return ret
}
// Export write function for compatibility
export { influxWrite }

424
databases/mongo.js Normal file
View File

@@ -0,0 +1,424 @@
/* Interface for MongoDB
*/
import { MongoClient } from 'mongodb'
import { logit, logerror } from '../utilities/logit.js'
import { DateTime } from 'luxon'
import {returnOnError} from "../utilities/reporterror.js";
// const nodemailer = require('nodemailer');
let MONGOHOST = process.env.MONGOHOST;
let MONGOPORT = process.env.MONGOPORT;
let MONGOAUTH = process.env.MONGOAUTH;
let MONGOUSRP = process.env.MONGOUSRP;
let MONGOBASE = process.env.MONGOBASE;
if (MONGOHOST === undefined) { MONGOHOST = 'localhost';}
if (MONGOPORT === undefined) { MONGOPORT = 27017; }
if (MONGOAUTH === undefined) { MONGOAUTH = 'false'; }
if (MONGOBASE === undefined) { MONGOBASE = 'sensor_data'; }
let MONGO_URL = 'mongodb://'+MONGOHOST+':'+MONGOPORT; // URL to mongo database
if (MONGOAUTH === 'true') {
// MONGO_URL = 'mongodb://'+MONGOUSRP+'@' + MONGOHOST + ':' + MONGOPORT + '/?authSource=' + MONGOBASE; // URL to mongo database
MONGO_URL = 'mongodb://'+MONGOUSRP+'@' + MONGOHOST + ':' + MONGOPORT + '/?authSource=admin'; // URL to mongo database
}
export const properties_collection = 'properties'
export const connectMongo = async () => {
try {
logit(`Try to connect to ${MONGO_URL}`)
let client = await MongoClient.connect(MONGO_URL)
logit(`Mongodbase connected to ${MONGO_URL}`)
return client
}
catch(error){
throw(error)
}
}
const listDatabases = async (client) => {
let databasesList = await client.db().admin().listDatabases();
console.log("Databases:");
databasesList.databases.forEach(db => console.log(` - ${db.name}`));
}
/* ***************************************************
// READ routines
******************************************************/
// Read properties from the database
export const readProperties = async (query, limit = 0) => {
let ret = {err: null, properties: null}
let client = await connectMongo()
try {
if ("sid" in query) { // if sid is given, read property for sid
ret.properties = await client.db(MONGOBASE).collection('properties_collection').findOne({_id: query.sid})
} else { // otherwise read props corresponding to query
ret.properties = await client.db(MONGOBASE).collection(properties_collection).find(query).limit(limit).toArray()
}
} catch (e) {
ret.err = e
}
finally {
client.close()
}
return ret
}
export const readChipData = async (sid) => {
let ret = { err: null, chipdata: null}
let client = await connectMongo()
try {
ret.chipdata = await client.db(MONGOBASE).collection('prop_flux').findOne({_id: sid},{projection: {chip: 1, _id: 0}})
} catch (e) {
ret.err = e
}
finally {
client.close()
}
return ret
}
// read mapdata from database
export const readMapdata = async (query, limit) => {
let ret = {err: null, mapdata: []}
let client = await connectMongo()
try {
ret.mapdata = await client.db(MONGOBASE).collection("mapdata").find(query).limit(limit).toArray()
} catch (e) {
ret.err = e
}
finally {
client.close()
}
return ret
}
export const getallProperties = async (coll, query) => {
let ret = {err: null, properties: []}
let client = await connectMongo()
try {
ret.properties = await client.db(MONGOBASE).collection(coll)
.find(query).toArray()
} catch (e) {
ret.err = e
}
finally {
client.close()
}
return ret
}
export const getOneproperty = async (sid) => {
let ret = {error: false}
let client = await connectMongo()
try {
ret.properties = await client.db(MONGOBASE).collection(properties_collection)
.findOne({_id: sid})
} catch (e) {
ret = {error: true, errortext: e}
}
finally {
client.close()
}
return ret
}
export const readAKWs = async (options) => {
let ret = {values: { akws: [], th1_akws: []}, err: null}
let erg = []
let client = await connectMongo()
try {
let docs = await client.db(MONGOBASE).collection("akws")
.find().toArray()
if(docs == null) {
return returnOnError(ret, 'akws - docs == null', readAKWs.name)
}
logit(`getawkdata: data fetched from akws, length= ${docs.length}`);
ret.values.akws = docs
let docs1 = await client.db(MONGOBASE).collection("th1_akws")
.find().toArray()
if(docs1 == null) {
return returnOnError(ret, 'th1_akws - docs == null', readAKWs.name)
}
logit(`getawkdata: data fetched from th1_akws, length= ${docs1.length}`)
ret.values.th1_akws = docs1
} catch (e) {
return returnOnError(ret, e, readAKWs.name)
}
finally {
client.close()
}
return ret
}
export const fetchActData = async (opts) => {
let ret = {err: null, values: []}
let start = opts.start.slice(7)
let end = opts.stop.slice(6)
start = DateTime.fromISO(start).toJSDate()
end = DateTime.fromISO(end).toJSDate()
let query = {sensorid: opts.sensorid, datetime: {$gte: start, $lt: end}}
let options = { projection: {_id: 0, values: 1, datetime: 1}, sort: {datetime: 1}}
let client = await connectMongo()
try {
// ret.values = await client.db(MONGOBASE).collection('noise_sensors')
// .find(query, options).toArray()
ret.values = await client.db(MONGOBASE).collection('noise_sensors').aggregate([
{$match: query},
{$sort: { datetime: 1}},
// {$replaceWith:
// {
// '$values.LA_min': '$values.noise_LA_min'
// }
// },
{$replaceWith:
{
datetime: {$dateToString: {format: '%Y-%m-%dT%H:%M:%SZ', date: '$datetime'}},
LA_min: '$values.LA_min',
LA_minx: '$values.noise_LA_min',
LA_max: '$values.LA_max',
LAeq: '$values.LAeq',
E10tel_eq: '$values.E10tel_eq' }
},
// {$project: {
// datetime: {$dateToString: {format: '%Y-%m-%dT%H:%M:%SZ', date: '$datetime'}},
// _id: 0, values:1
// }},
]).toArray()
}
catch(e) {
ret.err = e
}
finally {
client.close()
}
return ret
}
/*
Try to connect to mongodb://rexfue:s25BMmW2gg@192.168.51.22:27017
Try to connect to mongodb://rexfue:s25BMmW2gg@192.168.51.22:27017
*/
/*
let docs = await collection.find(
{ datetime:
{ $gte: start.toDate(), $lt: end.toDate() }
},
{ projection:
{_id:0, E_eq:0, E_mx:0, E_mi:0, E10tel_mx:0, E10tel_mi:0}, sort: {datetime: sort}
},
).toArray();
*/
export const fetchgeigerAVGData = async (opts) => {
let docs = []
let ret = {err: null, values: []}
let start = opts.start.slice(7)
let end = opts.stop.slice(6)
start = DateTime.fromISO(start).toJSDate()
end = DateTime.fromISO(end).toJSDate()
let datRange = {sensorid: opts.sensorid, datetime: {$gte: start, $lt: end}}
let sorting = {datetime: opts.sort};
let client = await connectMongo()
try {
if(opts.moving) {
docs = await client.db(MONGOBASE).collection('sensors').aggregate([
{
$sort: sorting
}, // sort by date
{
$match: {sensorid: opts.sensorid}
}, // select only values for given sensor
{
$match: datRange
}, // select only values in give data range
{
$setWindowFields: {
sortBy: {datetime: 1},
output: {
cpm_avg: {
$avg: "$values.counts_per_minute",
window: {
range: [-60, 0],
unit: "minute"
}
}
}
}
},
{
$project: {_id:0, cpm_avg: 1, datetime:1, uSvph_avg: { $multiply: ["$cpm_avg", opts.factor]}}
},
{
$sort: {datetime: 1}
}
]).toArray();
} else {
docs = await client.db(MONGOBASE).collection('sensors').aggregate([
{
$sort: sorting
}, // sort by date
{
$match: {sensorid: opts.sensorid}
}, // select only values for given sensor
{
$match: datRange
}, // select only values in give data range
{ $group: {
_id: {$dateTrunc: {
date: "$datetime",
unit: "minute",
binSize: 60
}},
cpm_avg: {$avg: "$values.counts_per_minute"}, // calculate the average
}
},
{ $addFields: { datetime: "$_id"}}, // change '_id' to 'datetime
{
$project: {_id:0, uSvph_avg: { $multiply: ["$cpm_avg", opts.factor]}, datetime: 1, cpm_avg: 1}
},
{
$sort: {datetime: 1}
}
]).toArray();
}
} catch(e) { // if there was an error
ret.err = e // log it to console
}
finally {
client.close()
}
ret.values = docs
return ret
}
export const fetchNoiseAVGData = async (opts) => {
let docs = []
let ret = {err: null, values: []}
let start = opts.start.slice(7)
let end = opts.stop.slice(6)
start = DateTime.fromISO(start).toJSDate()
end = DateTime.fromISO(end).toJSDate()
let peak = opts.peak; // threshold for peak count
let datRange = {sensorid: opts.sensorid, datetime: {$gte: start, $lt: end}}
let sorting = {datetime: opts.sort};
let grpId = {$dateToString: {format: '%Y-%m-%dT%H:00:00Z', date: '$datetime'}}
let client = await connectMongo()
try {
docs = await client.db(MONGOBASE).collection('noise_sensors').aggregate([
{$sort: sorting}, // sort by date
{$match: datRange}, // select only values in give data range
{
$group: {
_id: grpId,
n_average: {$avg: "$values.E10tel_eq"}, // calculate the average
n_sum: {$sum: "$values.E10tel_eq"}, // calculate the sum
peakcount: {$sum: {$cond: [{$gte: ["$values.LA_max", peak]}, 1, 0]}}, // count peaks
count: {$sum: 1}, // count entries
}
},
{$sort: {_id: 1}}, // sort by result dates
{ $addFields: { datetime: "$_id"}}, // change '_id' to 'date'
{$project: opts.long ? { _id:0, n_AVG: { $multiply: [10, {$log10: "$n_average"}]}, datetime:1, peakcount:1, count:1, n_sum:1} :
{_id:0, n_AVG: { $multiply: [10, {$log10: "$n_average"}]}, datetime:1, peakcount:1}}
]).toArray(); // return not all fields, depending on 'long'
} catch(e) { // if there was an error
ret.err = e // log it to console
}
finally {
client.close()
}
ret.values = docs
return ret
}
export const fetchAVGData = async (opts) => {
}
/*
// *********************************************
// getAverageData
//
// Calculate different values per hour
// average of E10tel_eq ( E10tel_eq => 10 ^(LAeq/10) )
// sum of E10tel_eq, to calculate day, night and eveniung averages
// count, how many values are used for average/sum
// paeakcount, how many values of LAmax are over defined peak value in every hour
//
// params:
// db: Database
// opt: different options (see further down)
//
// return
// depending an calling parameter 'what', not all values will be sent in 'values'
// JSON
// {[
// { datetime: "2019-10-23T00:00:00Z" , n_AVG: 67.22, n_sum: 32783, count: 24, peakcount: 6 }.
// { datetime: "2019-10-23T01:00:00Z" , n_AVG: 52.89, n_sum: 23561, count: 26, peakcount: 5 }.
// .........
// ]}
//
// *********************************************
async function getAverageData(db,opt) {
let start = opt.start;
let end = opt.end; // start and ent time for aggregation
let docs = []; // collect data here
const collection = db.collection('data_' + opt.sid);;
let span = opt.span // date range in days
let peak = opt.peak; // threshold for peak count
let long = opt.long; // true => give extra output
let nbrOfHours = opt.end.diff(opt.start,'hours') + 24;
let datRange = {datetime: {$gte: opt.start.toDate(), $lt: opt.end.toDate()}};
let sorting = {datetime: opt.sort};
let grpId = {$dateToString: {format: '%Y-%m-%dT%H:00:00Z', date: '$datetime'}};
try {
docs = await collection.aggregate([
{$sort: sorting}, // sort by date
{$match: datRange}, // select only values in give data range
{
$group: {
_id: grpId,
n_average: {$avg: '$E10tel_eq'}, // calculate the average
n_sum: {$sum: '$E10tel_eq'}, // calculate the sum
peakcount: {$sum: {$cond: [{$gte: ["$LA_max", peak]}, 1, 0]}}, // count peaks
count: {$sum: 1}, // count entries
}
},
{$sort: {_id: 1}}, // sort by result dates
{ $addFields: { datetime: "$_id"}}, // change '_id' to 'date'
{$project: opt.long ? { _id:0, n_AVG: { $multiply: [10, {$log10: "$n_average"}]}, datetime:1, peakcount:1, count:1, n_sum:1} :
{_id:0, n_AVG: { $multiply: [10, {$log10: "$n_average"}]}, datetime:1, peakcount:1}}
]).toArray(); // return not all fields, depending on 'long'
} catch(e) { // if there was an error
console.log(e); // log it to console
}
// To easily extract the values, we copy the data from docs into a new array, so that the
// hour in an element in docs becomes the index into the new array (for every new day this
// index will be incremented by 24). Missing values are marked by: {n_sum=-1, n_AVG=-1}.
let hoursArr = new Array(nbrOfHours); // generate new array
let emptyValues = opt.long ? {n_sum: -1, n_AVG:-1} : {n_AVG:-1};
hoursArr.fill(emptyValues); // fill with 'empty' value
let startDay = moment.utc(docs[0].datetime).date(); // calc first day
let k = 0;
for (let i=0; i<docs.length; i++) { // loop through docs
let stunde = moment.utc(docs[i].datetime).hours(); // extract current hour
let day = moment.utc(docs[i].datetime).date(); // and curren t day
if (day != startDay) { // if date has changed
k += 24; // increment index by 24
startDay = day;
}
hoursArr[k+stunde] = docs[i]; // copy date into hourArray
}
return hoursArr;
}
*/